Finitely Presented Subgroups of Automatic Groups and Their Isoperimetric Functions

نویسندگان

  • GILBERT BAUMSLAG
  • MARTIN R. BRIDSON
  • CHARLES F. MILLER
چکیده

We describe a general technique for embedding certain amalgamated products into direct products. This technique provides us with a way of constructing a host of finitely presented subgroups of automatic groups which are not even asynchronously automatic. We can also arrange that such subgroups satisfy, at best, an exponential isoperimetric inequality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subgroups of Word Hyperbolic Groups in Dimension 2

If G is a word hyperbolic group of cohomological dimension 2, then every subgroup of G of type FP2 is also word hyperbolic. Isoperimetric inequalities are denned for groups of type FP2 and it is shown that the linear isoperimetric inequality in this generalized context is equivalent to word hyperbolicity. A sufficient condition for hyperbolicity of a general graph is given along with an applica...

متن کامل

Isoperimetric inequalities and the homology of groups

An isoperimetric function for a finitely presented group G bounds the number of defining relations needed to prove that a word w =G 1 in terms of the length of w. Suppose G = F/R is a finitely presented group where F is a finitely generated free group and R is the normal closure of a finite set of relators. For each w ∈ R we define the area ∆(w) to be the least number of uses of the given relat...

متن کامل

Cohomological Lower Bounds for Isoperimetric Functions on Groups

If the finitely presented group G splits over the finitely presented subgroup C, then classes are constructed in H2 (∞) (G) which reflect the splitting and which serve as lower bounds for isoperimetric functions for G. It is proved that H2 (∞) (G) = 0 for all word hyperbolic groups G. A converse is obtained for the combination theorem for hyperbolic groups of Bestvina-Feighn. The Mayer-Vietoris...

متن کامل

Isodiametric and Isoperimetric Inequalities for Complexes and Groups

It is shown that D. Cohen’s inequality bounding the isoperimetric function of a group by the double exponential of its isodiametric function is valid in the more general context of locally finite simply connected complexes. It is shown that in this context this bound is ‘best possible ’. Also studied are seconddimensional isoperimetric functions for groups and complexes. It is shown that the se...

متن کامل

Isoperimetric and Isodiametric Functions of Groups

This is the first of two papers devoted to connections between asymptotic functions of groups and computational complexity. One of the main results of this paper states that if for every m the first m digits of a real number α ≥ 4 are computable in time ≤ C22Cm for some constant C > 0 then nα is equivalent (“big O”) to the Dehn function of a finitely presented group. The smallest isodiametric f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997